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Recent theoretical work suggests that systematic pruning of dis-
ordered networks consisting of nodes connected by springs can
lead to materials that exhibit a host of unusual mechanical proper-
ties. In particular, global properties such as Poisson’s ratio or local
responses related to deformation can be precisely altered. Tun-
able mechanical responses would be useful in areas ranging from
impact mitigation to robotics and, more generally, for creation
of metamaterials with engineered properties. However, experi-
mental attempts to create auxetic materials based on pruning-
based theoretical ideas have not been successful. Here we intro-
duce a more realistic model of the networks, which incorporates
angle-bending forces and the appropriate experimental boundary
conditions. A sequential pruning strategy of select bonds in this
model is then devised and implemented that enables engineering
of specific mechanical behaviors upon deformation, both in the
linear and in the nonlinear regimes. In particular, it is shown that
Poisson’s ratio can be tuned to arbitrary values. The model and
concepts discussed here are validated by preparing physical real-
izations of the networks designed in this manner, which are pro-
duced by laser cutting 2D sheets and are found to behave as pre-
dicted. Furthermore, by relying on optimization algorithms, we
exploit the networks’ susceptibility to tuning to design networks
that possess a distribution of stiffer and more compliant bonds
and whose auxetic behavior is even greater than that of homoge-
neous networks. Taken together, the findings reported here serve
to establish that pruned networks represent a promising platform
for the creation of unique mechanical metamaterials.
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When one stretches a material along one axis, intuition sug-
gests that the material will contract in the orthogonal lat-

eral directions. For most natural and synthetic materials, this
intuition is confirmed by experiment. This behavior is quantified
by Poisson’s ratio, ν, which for a deformed material is defined
as the negative ratio of the material’s lateral strain to its axial
strain. In linear elastic theory for an isotropic sample, Poisson’s
ratio is a monotonic function of the ratio of the material’s shear
modulus, G , to its bulk modulus, B . In two dimensions ν→ 1 as
G/B→ 0. In this limit, the material is “incompressible,” mean-
ing that its volume does not change during this axial compres-
sion. In the limit G/B→∞, ν→−1. In the range where ν is
negative, materials become wider as they are stretched and thin-
ner as they are compressed. Such materials, termed “auxetics,”
show promise in applications that require structural elements (1–
3), impact absorbers (4, 5), filters (6, 7), fabrics (8, 9), or other
tailor-made mechanical responses. Many auxetic materials are
metamaterials or materials constructed from building blocks with
designed functionality. Metamaterials represent a growing area
of research in soft matter physics (10).

Auxetic materials have been formed through a variety of
preparation protocols. Under special processing conditions,
polymer foams and fibers, for example, can exhibit negative
Poisson’s ratios (4, 11–14). Auxetic foams, in particular, can
be formed through a process of heating and sintering fine
particles of ultrahigh molecular weight polyethylene (11, 15),
leading to structures of nodes connected by thin fibrils which

collapse isotropically when compressed. Such structures are
termed “reentrant” and are a common motif in auxetic mate-
rials (11, 16). When compressed uniaxially, these nodes and fib-
rils undergo complex rearrangements that give rise to their aux-
etic behavior. As materials approach the lower limit of Poisson’s
ratio, their hardness, or resistance to a small indentation, is pre-
dicted to increase rapidly (17). This prediction is confirmed in
the case of ultrahigh molecular weight polyethylene, where the
hardness of the auxetic material far exceeds that of a nonauxetic
but otherwise equivalent foam (4).

The node and fibril structures common in auxetic polymer
foams can be thought of as networks consisting of nodes con-
nected by bonds. A central, common feature of past efforts to
design auxetic materials in both theory and experiment, how-
ever, has been a reliance on regular, ordered lattices. Such lat-
tices include the double-arrowhead structure (8, 18), star honey-
comb structures (19), reentrant honeycombs (20, 21), and others
(22). Building on recent theoretical arguments (23–25), in this
work we focus on disordered, random networks.

In the linear regime, the bulk modulus, B , or the shear mod-
ulus, G , of a network is proportional to the sum of the potential
energies that are stored in each bond when the network is com-
pressed or sheared. The decrease in B or G when the i th bond is
removed is denoted ∆Bi or ∆Gi , respectively. In a simple crys-
talline network, every bond responds in nearly the same manner
to a global deformation. In contrast, in amorphous networks the
response of individual bonds to a global deformation can span
many orders of magnitude (23, 25).

Significance

Recent work indicates that selective pruning of disordered
networks of nodes connected by bonds can generate mate-
rials with nontrivial mechanical properties, including auxetic
networks having a negative Poisson’s ratio ν. Until now, aux-
etic networks created based on this strategy have not been
successfully realized in experiment. Here a model that includes
angle-bending forces and the experimental boundary condi-
tions is introduced for pruning-based design of auxetic mate-
rials. By pruning the appropriate bonds, ν can be tuned to
values approaching the lower mechanical limit of −1, and
the corresponding laboratory networks exhibit good agree-
ment with model predictions. Optimization algorithms are
then used to show that highly auxetic materials can be engi-
neered from inhomogeneous bonds and nodes that exhibit
distinct mechanical characteristics.
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Furthermore, there is little correlation between the values of
∆Bi and ∆Gi of a bond, i (25). This suggests that, by selec-
tive removal or “pruning” of bonds with large or small values
of ∆Gi or ∆Bi , the ratio G/B can be manipulated to reach
a desired value; this would lead to disordered, “amorphous”
materials with intriguing mechanical properties. Recent work has
shown that similar pruning strategies could be used to design
allosteric behavior into a network (where a deformation at a local
source can produce a desired response at a distant target site).
This behavior was demonstrated in experiments (26). Creating
auxetic materials, however, is more challenging and success in
creating experimental prototypes has been elusive. More specif-
ically, simple models were used to design pruned networks with
negative Poisson’s ratio but, when prepared in the laboratory,
they failed to exhibit auxetic behavior. This state of affairs has led
to the question of whether pruning-based approaches for design
of auxetic materials are fundamentally flawed or whether it is
indeed possible to engineer truly auxetic laboratory materials by
relying on more sophisticated models.

Here we address that question by introducing a mechanical
model of disordered networks that incorporates the effects of
angle bending in a unique way. The model is minimally com-
plex, and it is parameterized by comparison with experimental
data for simple, random disordered networks. By adopting a
pruning strategy that identifies and removes select bonds from
these networks, it is shown that it is possible to reach Poisson’s
ratios as low as ν=−0.8. The 2D pruned networks designed
in this manner are then prepared in the laboratory from rub-
ber sheets that have been laser cut according to the simulated
models. They are found to behave as predicted. Structural analy-
sis shows that highly auxetic networks are marked by an abun-
dance of concave polygons. When networks are compressed
uniaxially, these concave polygons shrink in all dimensions. Col-
lectively, the local deformations of these concave polygons yield
global auxetic behavior. These structures also give rise to a sub-
linear stress–strain behavior, which is an important characteris-
tic of impact-mitigating materials. We also investigate the effect
of angle-bending stiffness, a parameter which plays a dominant
role in ensuring agreement between simulation and experiment.
This parameter also dramatically affects a material’s ability to
be made auxetic, both in simulation and in experiment. Net-
works composed of bonds with angle-bending forces that are
orders of magnitude weaker than those relevant to our exper-
imental realizations can easily be tuned to show ν=−1, while
networks with much stiffer angle-bending forces cannot be tuned
at all. Such changes are explained by the distributions and corre-
lations of ∆Gi and ∆Bi . We conclude our discussion by design-
ing highly auxetic materials through a materials optimization
strategy. Specifically, by selectively manipulating the mechanical
characteristics of a few select bonds, it is shown that the value
of Poisson’s ratio can be further reduced from ν=−0.8 to −0.9.
The improved networks designed in this manner can then be suc-
cessfully produced in the laboratory.

Models
Simulation Model. To have well-defined starting configurations,
we base our networks on jammed packings of frictionless spheres
at zero temperature (27). We note, however, that the results
are not necessarily confined to this choice of starting condi-
tions. Spherical particles are initially placed at random positions
within the simulation area. Particles i and j experience harmonic
repulsions

V (rij ) =
ε

2
(1− rij

σij
)
2
Θ

(
1− rij

σij

)
, [1]

where rij is the center-to-center distance, σij is the sum of the
radii of particles i and j , and Θ(x ) is the Heaviside step function.

ε= 1 sets the energy scale. The energy is minimized to produce
zero-temperature, mechanically stable configurations. Particles
are randomly assigned one of four evenly spaced radii (namely
0.6, 0.74, 0.87, and 1.0), leading to an amorphous packing when
compressed isotropically. In all calculations, the contacts of par-
ticles which are in contact with fewer than three adjacent parti-
cles are not counted toward the total Z , as these would not con-
tribute to the modulus of a jammed system. Such particles are
removed before bonds are formed.

Two particles are considered to be in contact when rij <σij .
The average number of contacts or bonds per particle, Z , plays
a central role in a host of network characteristics (27–29). To
set the value of Z , we create harmonic repulsive walls at the
simulation box edges, whose positions are adjusted and the con-
figuration is relaxed until the required number of particle con-
tacts is achieved. Unstretched bonds of length r0ij are then placed
between the centers of pairs of contacting particles i and j and
the soft-sphere potential is removed. The energy due to bond
compression is thus

Vc(rij ) =
1

2r0ij
(rij − r0ij )

2
. [2]

To include angle-bending constraints, we introduce a unit vector,
~si , at each node i of the network, as shown in Fig. 1. A bond
connecting nodes i and j makes an angle θji~si with the vector
~si . When the system is relaxed, this angle adopts its equilibrium
value, θ0ji~si . The energy cost to change an angle is quadratic,

Vb(θji~si ) =
kang

2
(θji~si − θ

0
ji~si )

2
, [3]

where kang sets the energy scale for the angle-bending potential.
During energy minimization, to obtain the ground state where
the system is in mechanical equilibrium, the direction of ~s on
each site is allowed to vary to minimize the total angular energy
of a node. The coefficient kang is determined by comparing the

Fig. 1. Schematic describing how angular restraints are applied for the
node shown in red. A director, shown in gray, is attached to each node with
a harmonic bond potential. Harmonic angles potentials are added between
each pair of bonded nodes and the director, as indicated by the angles θa−d .
The director is positioned such that θa−d are as far from 0◦ and 180◦ as pos-
sible. This scheme is applied at each node.
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Fig. 2. Examples of typical 500-node networks before and after pruning
with Z0 = 4.0, 5.2, 5.9. Top row shows unpruned networks, while Bottom
row shows networks which have been pruned to Z = 3.0. Unpruned net-
works show decreasing ν as Z0 increases while pruned networks show a
minimum ν at Z0 = 5.2. This minimum ν at Z0 = 5.2 corresponds to a high
fraction of reentrant nodes which can collapse inward as the system is
compressed.

response of model networks to those prepared in experiments
and depends on the material and shape of the bonds, as described
in Methods.

The total energy of a network under stress is the sum of two
terms: a compressive component given by Eq. 2 and a bending
component, given by Eq. 3. Note that the compressive strength
is scaled by 1/r0ij as would occur in a physical mechanical strut of
constant thickness.

Fig. 2 shows representative realizations of 2D disordered net-
works consisting of nodes connected by bonds, before and after
pruning.

In two dimensions, there are two independent shear moduli—
one associated with simple shear and one with pure shear. The
modulus associated with simple shear influences the value of
ν that is measured when the material is deformed by pulling
or pushing from opposite corners. The modulus associated with
pure shear relates to the value of ν measured when the material
is uniaxially compressed or expanded in x or y , as shown in SI
Appendix, Fig. S5. In this study we focus primarily on algorithms
that influence only the modulus associated with pure shear since
this can be more easily measured in our experiments. However,
we also show that isotropic auxetic networks can be created using
similar algorithms which consider bond contributions to both
pure and simple shear. Such materials are auxetic with respect
to any uniaxial deformation. G and B are measured as described
in Methods.

Results
Bond Response Distributions. In an amorphous network the distri-
butions of ∆Bi and ∆Gi , P(∆Bi) and P(∆Gi) can span many
orders of magnitude. That is, when some bonds are removed, G
or B may decrease significantly, while when others are removed,
there may be only a negligible decrease. Our pruning procedure
targets bonds that contribute little to the shear modulus but con-
tribute strongly to the bulk modulus. It is therefore important
that P(∆Bi) and P(∆Gi) be broad and extend to small values
(23, 25).

A second crucial condition for successful pruning is that ∆Bi

and ∆Gi be uncorrelated. Based on these two features, one can

selectively remove bonds from a disordered network to drive B ,
G , and thus ν to a desired target value (23, 24).

Fig. 3 A and B shows the probability distributions P(∆Bi)
and P(∆Gi) for unpruned networks. Results are shown for
networks with Z0 (Z of the network before pruning) between
4.0 and 5.9, with kang = 0.01. The value of kang is set as the
value which best reproduces the deformation observed in exper-
iment, as described in Methods. As Z0 increases, both P(∆Bi)
and P(∆Gi) become narrower. This suggests that networks with
lower coordination numbers are more amenable to pruning. A
peak in P(∆Bi) becomes apparent for Z0 = 5.9.

To facilitate effective pruning, bond response distributions
must be not only broad, but also uncorrelated. Fig. 3C shows
the Pearson correlation coefficient for ∆Gi and ∆Bi across a
range of Z0 values. While distributions are significantly uncorre-
lated between Z0 = 4.0 and 5.2, the level of correlation increases
thereafter. As we will see, networks pruned from Z0 = 5.2 lead
to the lowest value of ν.

A

B

C

Fig. 3. Probability distributions and correlations of ∆Gi and ∆Bi for
unpruned 500-node networks with different Z0. A shows probability dis-
tributions of ∆Gi , while B shows those for ∆Bi . Strains for both deforma-
tions are εy = 1× 10−4. Datasets as (Z, color) are (4.0, blue), (4.8, green),
(5.2, red), and (5.9, cyan). Each dataset is taken from 100 independent 500-
node networks. The bond bending strength is kang = 0.01, a value which is
experimentally realizable. As the coordination number increases, distribu-
tions narrow significantly, reducing the networks’ propensity to be pruned.
C shows the correlation between ∆Gi and ∆Bi for networks over a range
of initial Z values. SDs of r values across 100 independent configurations
are shown.
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Pruning. For the iterative pruning strategy adopted here, at each
iteration the lowest ∆Gi bond is removed. Given the low cor-
relation between ∆Gi and ∆Bi , pruning the lowest ∆Gi bonds
tends to increase G/B and decrease ν. At each iteration, ∆G for
a bond is measured by performing a trial removal of that bond
and by measuring the resulting shear modulus, thereby resulting
in nbond measurements of G . Each measurement of G requires
on the order of seconds or minutes of central processing unit
(CPU) time, depending on network size. Creating a large aux-
etic network can therefore be computationally demanding. The
calculation of ∆Gi can be parallelized with one core per ∆Gi

measurement. We use the parallel workflow management soft-
ware Swift/T to parallelize this process across several hundred
CPU cores, thereby accelerating network creation (30).

Fig. 4 shows Poisson’s ratios, ν, for networks having different
values of Z0. Each dataset represents an average of 50 indepen-
dent pruned networks of 500 nodes each.

Poisson’s ratio is determined by introducing a small strain of
magnitude εy = 1× 10−4 in the y dimension of the network,
allowing the system to relax to an average force tolerance of
1× 10−13, and then measuring the resulting lateral deformation.
Note that while simple bead-spring networks (those ignoring
angle bending) lose rigidity below Z = 4, the angular restraints
in the model introduced here lead to rigid networks and to
much lower values of Z . As shown in SI Appendix, Fig. S2,
εy = 1× 10−4 is well within the linear regime.

Several interesting features are apparent in the pruning pro-
gression shown in Fig. 4. First, even before there is any pruning,
Poisson’s ratio of the networks decreases from 0.51 at Z0 = 4.0
to 0.21 at Z0 = 5.9, revealing a wide variation of ∆ν= 0.3. A

A

B

Fig. 4. (A and B) Poisson’s ratios resulting from pruning 500-node networks
with different values of Z0 shown in A and with resulting structural and
mechanical properties shown in B. Data are taken from 50 independent 500-
node networks. In A, 95% confidence intervals are shown. To prune, we
remove the lowest ∆G bond at each iteration. Networks are pruned until
Z = 2.8, at which point they become so sparse that ν fluctuates wildly with
further pruning. In B, the blue dataset shows Poisson’s ratio reached at Z =

3.0 with respect to Z0, with 95% confidence intervals shown. A minimum
ν is observed at Z0 = 5.2. Plotted in red is the fraction of nodes which are
classified as reentrant. The data show that the most auxetic networks show
the greatest degree of reentrant behavior, suggesting a structural origin
for ν.

Fig. 5. Bulk and shear moduli of networks as low ∆G bonds are pruned.
Initially, the bulk moduli decrease while the shear moduli remain constant,
resulting in the increasing magnitude of the slope of ν observed in Fig. 4.
After significant pruning, G begins to decrease. Near Z = 3.0, G/B plateaus
and ν reaches its minimum.

decrease in ν with increasing coordination has been observed
previously in network systems (31). Second, the initial slope of
the Poisson’s ratio curve as a function of pruning decreases from
dν/dZ = 0.47 to 0.14 between Z0 = 4.0 and Z0 = 5.9 (as calcu-
lated by the average slope over the first ∆Z = 0.1 pruning). The
smaller value of dν/dZ at higher Z0 is consistent with the nar-
rower distribution functions and higher correlations observed, as
shown in Fig. 3. However, a higher Z0 also implies that there
are simply more bonds available for pruning. These factors con-
spire to produce the lowest pruned networks when Z0 = 5.2. This
also corresponds to the highest Z0 before the correlation of ∆Gi

and ∆Bi begins to increase, as seen in Fig. 3C. Networks with
Z0 = 5.2 show a minimum average of ν=−0.62. The lowest ν
value achieved for an individual network, however, is ν=−0.79.

To explore further how ν changes with pruning, we examine
G and B of networks as they are pruned, as shown in Fig. 5. In
two dimensions, linear elastic theory states ν= (1−G/B)/(1 +
G/B). By pruning the lowest ∆G bonds, our aim is to maintain
a high value of G while reducing B . During pruning, initially B
drops and G remains nearly constant, resulting in the steepening
slope of ν seen in Fig. 4. At some value of Z along the prun-
ing process, G begins to decrease more rapidly, and the slope
of ν decreases in magnitude until ν reaches its minimum. This
accelerated decrease of G can be attributed to the fact that few
low-∆Gi bonds remain once pruning has progressed sufficiently.

Structural Features. Fully pruned networks (Z = 3.0) show a
range of ν values that depend on their corresponding Z0, sug-
gesting that underlying structural differences exist between these
pruned networks. Fig. 2 shows representative networks with
Z0 = 4.0, 5.2, 5.9 before and after pruning to Z = 3.0. One can
appreciate that these structures are in fact quite different from
each other, despite having similar numbers of nodes and bonds.
To quantify these structural differences, we calculate the per-
centage of nodes which are reentrant in pruned networks, as
shown in Fig. 4B. Here, a reentrant node is defined as one hav-
ing an angle between adjacent bonds that is greater than 180◦. As
can be seen in Fig. 2, reentrant nodes manifest as concave angles
in polygons within the network. Such polygons tend to collapse
inward at reentrant nodes when compressed. A sufficient num-
ber of such polygons could lead to globally auxetic behavior. As
can be seen in Fig. 4B, more auxetic networks exhibit a higher
percentage of reentrant nodes. This structural motif therefore

Reid et al. PNAS | Published online January 30, 2018 | E1387
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Fig. 6. Poisson’s ratios from simulation and experiment for pruned and
unpruned networks. Shown in green and red is ν with uniaxial strain from
three different networks pruned to Z = 3.0 from Z0 = 5.2. The solid lines
represent the average ν for the three configurations and the shaded areas
represent standard deviations. The dashed blue line shows ν for unpruned
networks in simulation at low strain. A value of kang = 9× 10−3 in simula-
tion is fitted to match this experimental bond shape (Inset). This kang fits
well for all networks which use this bond shape. A section of an experimen-
tal network is shown as an example of the individual bond shape used.

provides a basis for design of amorphous or otherwise disordered
networks that are auxetic and isotropic. In this calculation we
did not classify nodes with only two bonds as reentrant, although
we arrive at qualitatively the same conclusions if they are
included.

Experimental Validation. Experimental pruned networks are
made of laser-cut sheets of rubber (26) as described in Meth-
ods. The strength of bond bending, kang in simulation, is mod-
ified by controlling the thickness of the bonds at the point where
they attach to the nodes as well as their aspect ratio as seen
in Fig. 6, Inset. We focus on the bond shape shown in Fig. 6.
The deformation of such networks can be described quantita-
tively by our model with the value kang = 9× 10−3, which we use
for all networks composed of bonds of this shape. We uniaxi-
ally compress three independent networks with Z0 = 5.2 pruned
to Z = 3.0 and measure ν in both simulation and experiment as
shown in Fig. 6. At low strains, networks are strongly auxetic;
however, ν increases monotonically with increasing strain.

We now examine the response of a particular network formed
with kang = 9× 10−3. Fig. 7A shows a network compressed with
εy = 0.09. The shape of the uncompressed network is shown
in gray, serving to demonstrate its auxetic response. Fig. 7B
directly compares experimental and simulated configurations at
εy = 2%. The experimental configuration is shown in red, and
the simulated configuration is shown in blue. At this strain,
experiment and simulation are in good agreement. Note that
the network shown in Fig. 7B is isotropic and will be auxetic
with respect to any strain. By iteratively pruning the minimum
∆Gpure + ∆Gsimple bond, we achieve ν=−0.25 for this network.
For higher strains, our simulations are no longer able to accu-
rately predict node positions, as they do not describe the behav-
ior of physical bonds and nodes when they collide. However,
despite this shortcoming, the trends of ν with εy are captured
well by our model, as shown in Fig. 6.

Angle-Bending Stiffness. We have focused only on values of kang
within a relatively narrow range, but one could conceive of spe-
cially designed experimental realizations which would span a

Fig. 7. A compressed 500-node experimental network with comparison
with simulation. (A) A compressed experimental network at a strain of
εy = 9%. The gray shaded region indicates the shape of the uncompressed
network, and the green outline represents the shape at εy = 5%. (B) Com-
parison of an experimental configuration with that predicted from simu-
lation at εy = 2%. Note that this network is isotropic and will be auxetic
with respect to any uniaxial strain, which is distinct from the other networks
in this work. It shows ν=−0.25 for deformations up to εy = 4%. In red is
shown a rendering of the experimental configuration and in blue is shown
the simulated configuration at the same strain.

E1388 | www.pnas.org/cgi/doi/10.1073/pnas.1717442115 Reid et al.
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Fig. 8. Poisson’s ratios resulting from pruning 500-node networks with
Z0 = 5.2 and kang values which range from 10−4 to 100. With larger kang,
pruning becomes less effective due to narrower ranges of ∆Gi and ∆Bi

and increased correlations between the two quantities. In the lower limit, ν
approaches −1.0 as predicted in previous work (23).

much wider range. This is of interest because networks with
greater bond stiffness can withstand greater strains before fail-
ing. As such, we turn our attention to the effect that a wide
range of bond-bending stiffness has on ν. We study networks with
Z0 = 5.2, which yielded the lowest value of ν for kang = 0.01. Fig.
8 shows ν resulting from low-∆G pruning of 500-node networks
with values of kang that span five orders of magnitude, from 10−4

to 100. Consistent with previous work (23), ν→−1 as kang→ 0 in
fully pruned networks. Consistent with these results, we find that
as kang becomes smaller, bond response distributions become
wider and are more easily modified by pruning, as shown in SI
Appendix, Fig. S1.

Physical Insights from Model Improvement. Three features distin-
guish the model used in this work from that of previous attempts:
(i) the use of finite rather than periodic simulations, (ii) the use
of fixed boundary conditions as used in experiment, and (iii)
most importantly the addition of an angle-bending potential. To
demonstrate the importance of the angle-bending term, we study
a network which has been pruned to ν=−0.96 at Z = 3.9 with
an extremely low angle-bending stiffness of kang = 10−4. Increas-
ing kang to kang = 10−2 increases Poisson’s ratio to ν=−0.36.
Increasing kang past this experimentally determined value to
kang = 1 increases ν to 0.0, as shown in SI Appendix, Fig. S8. By
picking a value of kang which does not correspond to the exper-
imental realization, predictions from the simulation would be
inaccurate.

Our results suggest that weaker angle-bending forces allow for
more dramatic deformations of the concave polygons present in
these networks. Assigning a larger kang penalizes these deforma-
tions, which increases ν. Therefore, to create auxetic experimen-
tal realization of networks, care should be taken to minimize the
effect of angle-bending forces.

Stress–Strain Behavior. For a variety of impact-mitigation appli-
cations, it is of interest to develop materials that display a rela-
tively constant stress–strain behavior. Such materials can absorb
more energy while maintaining lower applied forces and thus
reduce the possibility of damage. As shown in SI Appendix, Fig.
S3, pruned networks display nearly constant stress past 3% strain.
At such strains, linear response calculations are no longer accu-
rate, as shown in SI Appendix, Fig. S2. We find that the linear
response framework applies well until roughly 1% strain.

Bond Strength Optimization. Up to this point, we have relied on
homogeneous materials, with identical bonds, for all calculations
and experiments. In what follows, we modify the strength of indi-
vidual bonds as a means for decreasing ν in networks composed
of bonds with different stiffnesses. This process can be mim-
icked in experiment by modifying the thickness or material of
a given bond. We implement a simple optimization algorithm
that iteratively strengthens by 10% the bond leading to the great-
est decrease in ν. Both the compressive modulus and the bend-
ing modulus of a particular bond are increased when a bond is
strengthened. We examine a particular network with kang = 10−2

and ν=−0.79. By successively strengthening individual bonds in
this network, we further decrease ν from −0.79 to −0.91 in sim-
ulation. Interestingly, after 430 iterations with 649 total bonds in
the network (where one bond in strengthened by 10% at each
iteration), 94% of the bonds remained untouched, while a select
few, 1.8%, are strengthened to more than five times their original
strength, leading to an essentially bimodal distribution of bond
strengths. These strengthened bonds are almost all connected as
shown in Fig. 9, Inset.

To validate the predictions of our simulations, we also pre-
pared an experimental realization of this optimized network.
For simplicity, bonds strengthened by a factor of 5 or greater
were made thicker, and others were left unchanged. The corre-
sponding experimental values of ν are shown in Fig. 9, showing
a decrease in ν of 0.059 at εy = 0.25% and a decrease of 0.11
at εy = 2.75%, in good agreement with predictions. Importantly,
these optimized materials with a few significantly stronger bonds
lend themselves to additive manufacturing. In such realizations,
some bonds could be constructed of highly rigid materials, while
the remainder would be more pliable, and more advanced opti-
mization algorithms could readily be applied to this problem.

Conclusion
In summary, we have established that it is possible to create
designer auxetic materials from amorphous networks. The prun-
ing strategy that we have proposed does not depend on the
initial configuration but rather relies on measuring aspects of
local response to a globally applied deformation. As such, it may

Fig. 9. Experimentally measured ν for an ordinary pruned network and
an otherwise identical network in which several of the bonds have been
strengthened. Error bars show 2.5σ. The bonds which were strengthened
were chosen in simulation to reduce ν. In simulation, the networks with
regular and strengthened bonds were predicted to show ν= 0.79, 0.91,
respectively, at small strains. Inset network configuration shows, in red,
bonds which were strengthened in experiment and, in blue, unstrength-
ened bonds.
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apply more generally to networks based on a variety of initial
preparation protocols and not just those based on jamming. The
models and concepts introduced in this work have been validated
through a concerted program of design, computation, and labo-
ratory experimentation. Amorphous networks are shown to offer
a number of control parameters that can be tuned to achieve
particular mechanical responses. It is found, for example, that
a network’s propensity to be made auxetic depends on both the
network’s original coordination number and the relative resis-
tance to angle bending. More pliable networks yield the low-
est Poisson’s ratios due to their wide bond response distribu-
tion and their low response correlation. Stiffer networks are less
amenable to pruning and show only limited changes of their Pois-
son’s ratio through pruning. By relying on bond-strength opti-
mization schemes, however, it is possible to alter Poisson’s ratio
of networks with stiff bonds considerably, thereby providing a
strategy to alter not only how auxetic a material is, but also its
intrinsic stiffness. While the results presented here have been
limited to 2D networks, the concepts and strategies proposed
should be equally applicable to three dimensions, where we can
use 3D printing to realize our computer models. We therefore
anticipate that these networks could be potentially useful for
applications involving additive manufacturing. Using appropri-
ately designed nanoparticles, it is also conceivable that one could
form auxetic materials through a self-assembly process.

Methods
Simulation Methods. Simulated networks are generated as described in
Models. A harmonic wall coefficient of 2.0 is used to compress particles.

To measure ν, εy = 1× 10−4 is applied and the transverse strain of nodes
at the left and right edges of the network is measured. Bulk proper-
ties are measured by applying uniform compressions of 1× 10−4. Shear
properties are measured with εx =−1× 10−4 and εy = 1× 10−4 or γ=

1× 10−4, for pure and simple shear, respectively. The average force is
relaxed to 1× 10−13 for all measurements. To mimic experiment, parti-
cles along the top and bottom edges of networks are restrained in the
x dimension. The coefficient to describe bond bending, kang, is fitted
by determining the value of kang which minimized mean-square distance
between nodes in uniaxially strained experimental and simulated networks
at εy = 3%. The same kang value is used to describe each class of experi-
mental bonds.

Experimental Methods. Experimental networks are constructed of laser-cut
silicone rubber sheets with a Shore value of A70 and a thickness of 1.5 mm as
described in previous work (26). We can vary the relative resistance to angle
bending (which is quantified by kang in our simulation model), by narrowing
or widening a section of the bond near the node (Fig. 6). To facilitate mea-
surement, nodes at the top and bottom of the network are fused into a solid
rubber piece, as shown in Fig. 7A. Poisson’s ratio is determined by applying
a uniaxial compression in the y direction and measuring the resulting lateral
strain.
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